

Slide 2

Overview: The Process That Feeds the Biosphere

- **Photosynthesis** is the process that converts solar energy into chemical energy
- Directly or indirectly, photosynthesis nourishes almost the entire living world

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Slide 3

- Autotrophs sustain themselves without eating anything derived from other organisms
- Autotrophs are the producers of the biosphere, producing organic molecules from CO₂ and other inorganic molecules
- Almost all plants are photoautotrophs, using the energy of sunlight to make organic molecules from H₂O and CO₂

opyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Slide 5

- **Heterotrophs** obtain their organic material from other organisms
- Heterotrophs are the consumers of the biosphere
- Almost all heterotrophs, including humans, depend on photoautotrophs for food and O₂

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Slide 6

Concept 10.1: Photosynthesis converts light energy to the chemical energy of food

- _____ are the major site of photosynthesis.
- are structurally similar to and likely evolved from photosynthetic bacteria
- Photosynthesis can be summarized as the following equation:

6 CO $_2$ + 12 H $_2$ O + Light energy \rightarrow C $_6$ H $_{12}$ O $_6$ + 6 O $_2$ + 6 H $_2$ O

 $\label{thm:condition} \mbox{How does this equation differ from cellular respiration?}$

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Camming

Slide 8

Slide 9

The Splitting of Water

- Chloroplasts split H₂O into hydrogen and oxygen, incorporating the electrons of hydrogen into sugar molecules
- Photosynthesis is a redox process in which ____ is oxidized and ____ is reduced

6 CO $_2$ + 12 H $_2$ O + Light energy \rightarrow C $_6$ H $_{12}$ O $_6$ + 6 O $_2$ + 6 H $_2$ O

opyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cumming

The Two Stages of Photosynthesis: A Preview

- Photosynthesis consists of the light reactions (the photo part) and Calvin cycle (the synthesis part)
- The light reactions (in the thylakoids):
 - Split H₂O
 - Release O₂
 - Reduce NADP+ to NADPH
 - Generate ATP from ADP by photophosphorylation

pyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Slide 11

- The <u>Calvin cycle</u> (in the stroma) forms sugar from CO_2 , using ATP and NADPH
- $\bullet\,$ The Calvin cycle begins with ${\bf carbon\ fixation},$ incorporating ${\rm CO_2}$ into organic molecules

opyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Slide 12

Slide 14

- A primary electron acceptor in the reaction center accepts an excited electron from chlorophyll a
- Solar-powered transfer of an electron from a chlorophyll a molecule to the primary electron acceptor is the first step of the light reactions

opyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Slide 15

- There are two types of photosystems in the thylakoid
- Photosystem II (PS II) functions first (the numbers reflect order of discovery) and is best at absorbing a wavelength of 680 nm
- The reaction-center chlorophyll $\it a$ of PS II is called P680
- Photosystem I (PS I) is best at absorbing a wavelength of 700 nm
- The reaction-center chlorophyll a of PS I is called P700

... Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummin,

A Comparison of Chemiosmosis in Chloroplasts and Mitochondria

- Chloroplasts and mitochondria generate ATP by chemiosmosis, but use different sources of energy
- Mitochondria transfer chemical energy from food to ATP; chloroplasts transform light energy into the chemical energy of ATP
- Spatial organization of chemiosmosis differs between chloroplasts and mitochondria but also shows similarities

pyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Slide 17

- In mitochondria, protons are pumped to the intermembrane space and drive ATP synthesis as they diffuse back into the mitochondrial matrix
- In chloroplasts, protons are pumped into the thylakoid space and drive ATP synthesis as they diffuse back into the stroma

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Slide 18

- ATP and NADPH are produced on the side facing the stroma, where the Calvin cycle takes place
- In summary, light reactions generate ATP and increase the potential energy of electrons by moving them from H₂O to NADPH

opyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cumming

Slide 20

Slide 21

Concept 10.3: The Calvin cycle uses ATP and NADPH to convert ${\rm CO_2}$ to sugar

- The Calvin cycle, like the citric acid cycle, regenerates its starting material after molecules enter and leave the cycle
- The cycle builds sugar from smaller molecules by using ATP and the reducing power of electrons carried by NADPH

lid	

- Carbon enters the cycle as CO₂ and leaves as a sugar named glyceraldehyde-3-phospate (G3P)
- For net synthesis of 1 G3P, the cycle must take place three times, fixing 3 molecules of CO₂
- The Calvin cycle has three phases:
 - Carbon fixation (catalyzed by rubisco)
 - Reduction
 - Regeneration of the CO₂ acceptor (RuBP)

opyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Slide 23

Concept 10.4: Alternative mechanisms of carbon fixation have evolved in hot, arid climates

- Dehydration is a problem for plants, sometimes requiring trade-offs with other metabolic processes, especially photosynthesis
- On hot, dry days, plants close stomata, which conserves H₂O but also limits photosynthesis
- The closing of stomata reduces access to ${\rm CO_2}$ and causes ${\rm O_2}$ to build up
- These conditions favor a seemingly wasteful process called photorespiration

opyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Slide 24

Photorespiration: An Evolutionary Relic?

- In most plants (C₃ plants), initial fixation of CO₂, via rubisco, forms a three-carbon compound
- In photorespiration, rubisco adds O₂ instead of CO₂ in the Calvin cycle
- Photorespiration consumes ${\rm O_2}$ and organic fuel and releases ${\rm CO_2}$ without producing ATP or sugar

... Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummin,

- Photorespiration may be an evolutionary relic because rubisco first evolved at a time when the atmosphere had far less O₂ and more CO₂
- Photorespiration limits damaging products of light reactions that build up in the absence of the Calvin cycle
- In many plants, photorespiration is a problem because on a hot, dry day it can drain as much as 50% of the carbon fixed by the Calvin cycle

opyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Slide 26

C₄ Plants

- C₄ plants minimize the cost of photorespiration by incorporating CO₂ into four-carbon compounds in mesophyll cells
- · This step requires the enzyme PEP carboxylase
- PEP carboxylase has a higher affinity for CO₂ than rubisco does; it can fix CO₂ even when CO₂ concentrations are low
- These four-carbon compounds are exported to bundle-sheath cells, where they release CO₂ that is then used in the Calvin cycle

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Slide 27

CAM Plants

- Some plants, including succulents, use crassulacean acid metabolism (CAM) to fix carbon
- CAM plants open their stomata at night, incorporating CO₂ into organic acids
- Stomata close during the day, and CO₂ is released from organic acids and used in the Calvin cycle

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Slide 29

The Importance of Photosynthesis: $A\ Review$

- The energy entering chloroplasts as sunlight gets stored as chemical energy in organic compounds
- Sugar made in the chloroplasts supplies chemical energy and carbon skeletons to synthesize the organic molecules of cells
- Plants store excess sugar as starch in structures such as roots, tubers, seeds, and fruits
- In addition to food production, photosynthesis produces the O₂ in our atmosphere

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummin
